Course	Credit Hours		Contact	Total
Code	(Th-Pr)	Thin Films	Hrs/Week	Contact Hrs
	3.0-0	(Elective)	(Th-Pr)	(Th-Pr)
ESE-815			3.0-0	45-0

Course Outline:

Thin film science and technology have gone through a thorough development which results in numerous new devices (e.g., Light Emitting Diodes (LED), fuel cell and solar cell) and new materials with fundamentally new properties. Topics include, but are not limited to, fundamentals on crystal structures and defects in thin films, the basic nucleation and growth mechanisms of thin films (growth models, lattice matching epitaxy and domain matching epitaxy), thin film processing techniques (CVD, MOCVD, MBE, PLD, Laser-MBE, sputtering, and evaporation etc.), thin film growth instrumentation aspect (energy source, chamber configurations, vacuum systems and growth controllers), and several advanced topics related to electrical and optical devices. Clean room technology.

<u>Eligibility Criteria</u>: B.E (Chemical, Mechanical, Electrical, Environmental and Materials)

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Electronic Thin Film	K-N	KNJ	Text
	Science for Electrical	Tu, J. W. Mayer and L. C.		
	Engineers and Materials			
	Scientists			
2.	Materials Science of Thin	M. Ohring	МО	Reference
	Films: Deposition and			
	<u>Structure</u>			
3.	Elements of X-ray	B. D. Cullity	BDC	Reference
	Diffraction, 2nd Edition,			
4	Introduction to	D. Hull and D. J. Bacon	DHD	Reference

Recommended Books:

Dislocations			
--------------	--	--	--

Course Objectives:

The primary objectives of this course are to familiarize students with practical applications of the principles of thermodynamics to various areas of engineering and operational aspects of deposition techniques to grow thin films to make devices.

Learning outcome:

In conjunction with the solar PV core module, this course will enable the students to differentiate between competing technologies i.e. monocrystalline solar cells & their thin film counterparts. The attendees will become conversant with the critical film fabrication technologies and the various means of characterization of the fabricated product.

Topics Covered:

No.	Topics	Text	Contact
		Book	Hours
1.	Thin film and nanomaterial characterization methods:	KNJ	4
	scanning probe microscopy (AFM, STM, etc.), and electronic		
	and optical spectroscopy (ellipsometry, Raman, XPS,		
	EELS, etc.) Silicon thin film technology: plasma synthesis of		
	nanomaterials, the design and manufacturing of amorphous		
	silicon cells		
	•Copper indium gallium selenide (CIGS) technology:		
	deposition methods, materials		
	and cells		
	Cadmium telluride (CdTe) technology: materials and cells		
	Dye-sensitized solar cells		
	High-efficiency solar cells		
2.	Overview of thin film technology for various industrial	KNJ	2
	Applications; Clean room technology		

3. Crystal structures of thin films KNJ	4
---	---

		1 - 1	
	Defects in thin films (vacancies and interstitials,	+MO	
	dislocations, grain boundaries etc.)		
	Nanocrystalline, polycrystalline and epitaxial thin films)		
4.	Interface and surface of thin films	MO+B	4
		DC	
5.	Thin film nucleation and growth models (2D, 3D, and 2D-	KNJ	4
	3D combination)		
6.	Epitaxial growth of thin films	MO+B	3
	Homoepitaxy and heteroepitaxy;	DC	
	Lattice matching epitaxy and domain matching epitaxy;		
	Superlattice structures and quantum wells		
7.	Diffusions: inter-diffusion, grain boundary diffusions,	KNJ	4
	reaction, and phase transformation,		
8.	Thin film growth techniques (Physical Vapor Deposition-	KNJ	4
	Thermal evaporation and e-beam evaporation		
	Sputtering,		
	MBE, Laser MBE		
	PLD)		
9.	Thin film growth techniques (Chemical Vapor Deposition-	KNJ	4
	CVD, PECVD, MOCVD)		
10.	Solution based deposition techniques-Sol-Gel, PAD.	KNJ	4
	Liquid phase epitaxy-LPE and other deposition techniques		
11.	Special topics on various thin film devices and fabrications	KNJ+	4
		MO	
12.	General overview of thin film characterization techniques	KNJ +	4
	(structural, chemical, and electrical characterizations)	МО	